skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hua, Xia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The removal of carbon dioxide from the atmosphere by the marine biological pump is a key regulator of Earth’s climate; however, the ocean also serves as a large source of nitrous oxide, a potent greenhouse gas and ozone-depleting substance. Although biological carbon sequestration and nitrous oxide production have been individually studied in the ocean, their combined impacts on net greenhouse forcing remain uncertain. Here we show that the magnitude of nitrous oxide production in the epipelagic zone of the subtropical ocean covaries with remineralization processes and thus acts antagonistically to weaken the radiative benefit of carbon removal by the marine biological pump. Carbon and nitrogen isotope tracer incubation experiments and nitrogen isotope natural abundance data indicate enhanced biological activity promotes nitrogen recycling, leading to substantial nitrous oxide production via both oxidative and reductive pathways. These shallow-water nitrous oxide sources account for nearly half of the air–sea flux and counteract 6–27% (median 9%) of the greenhouse warming mitigation achieved by carbon export via the biological pump. 
    more » « less
  2. null (Ed.)
    RNA silencing pathways control eukaryotic gene expression transcriptionally or posttranscriptionally in a sequence-specific manner. In RNA silencing, the production of double-stranded RNA (dsRNA) gives rise to various classes of 20–24 nucleotide (nt) small RNAs (smRNAs). In Arabidopsis thaliana, smRNAs are often derived from long dsRNA molecules synthesized by one of the six genomically encoded RNA-dependent RNA Polymerase (RDR) proteins. However, the full complement of the RDR-dependent smRNAs and functions that these proteins and their RNA-binding cofactors play in plant RNA silencing has not been fully uncovered. To address this gap, we performed a global genomic analysis of all six RDRs and two of their cofactors to find new substrates for RDRs and targets of the resulting RDR-derived siRNAs to uncover new functions for these proteins in plants. Based on these analyses, we identified substrates for the three RDRγ clade proteins (RDR3–5), which had not been well-characterized previously. We also identified new substrates for the other three RDRs (RDR1, RDR2, and RDR6) as well as the RDR2 cofactor RNA-directed DNA methylation 12 (RDM12) and the RDR6 cofactor suppressor of gene silencing 3 (SGS3). These findings revealed that the target substrates of SGS3 are not limited to those solely utilized by RDR6, but that this protein seems to be a more general cofactor for the RDR family of proteins. Additionally, we found that RDR6 and SGS3 are involved in the production of smRNAs that target transcripts related to abiotic stresses, including water deprivation, salt stress, and ABA response, and as expected the levels of these mRNAs are increased in rdr6 and sgs3 mutant plants. Correspondingly, plants that lack these proteins (rdr6 and sgs3 mutants) are hypersensitive to ABA treatment, tolerant to high levels of PEG8000, and have a higher survival rate under salt treatment in comparison to wild-type plants. In total, our analyses have provided an extremely data-rich resource for uncovering new functions of RDR-dependent RNA silencing in plants, while also revealing a previously unexplored link between the RDR6/SGS3-dependent pathway and plant abiotic stress responses. 
    more » « less
  3. Abstract Although parasites are known to have various effects on their hosts, we know little about their role in the assembly of diversifying host populations. Using an experimental bacterium (Pseudomonas fluorescens SBW25)-bacteriophage (ϕ2) system, we show that earlier parasite arrival significantly reduced the repeatability of host diversification. Earlier parasite arrival amplified the priority effects associated with the stochastic emergence of novel SBW25 phenotypes, translating into greater historical contingency in SBW25 diversification. Our results highlight the important role of parasite-host interactions in driving host adaptive radiation. 
    more » « less